Series 16M Direct Mode Bench Test

The below instructions help describe how to bench test a Series 16M conductivity relay in Direct mode.  This will help users ensure the relay is working properly and help explain the operation and wiring of the board. 

The relay works off liquids natural conductive properties and is typically wired to conductivity probes.  However, all Warrick conductivity relays also work with dry contact switches, like a LS-800 float level switch.  This also allows users to place jumpers between the sensor contacts to help test the board.

Single Level Service High Alarm 

Below diagram explains how to test the board if using it as a high-level alarm.  Place a jumper between H (High) and G (Reference) contacts.  This will simulate that the H and G probes are in the liquid and the relay will energize (LED on).  The Normally Open (NO) contact will close, and you will have continuity between NO and Common (C).                   

 

16m-single-level

Next step is to remove the jumper between H and G.  This will simulate that all probes (H, L, and G) are not in the liquid.  The relay will be de-energized, and you should have no continuity between NO and C, and continuity between NC and C.  

16m-single-level2

Single Level Service Low Alarm

The diagram below explains how to test the board if using it as a low-level alarm.  Typically, Inverse mode is used for low-level alarms, but Direct mode can still be used, the LED will just be on opposite of the alarm.  Place a jumper between H and G contacts, which will simulate the probes are in the liquid.  The relay will be energized (LED on), but since this is a low-level alarm you will be using the NC contact which will be open. 

16m-single-level3Next step is to remove the jumper between H and G, which will simulate that all the probes are dry.  The relay will be de-energized, and the LED will be off.  You should then have continuity between NC and C. 

16m-single-level4

Differential Level Service (Pump or Valve Control)

First step is to place a jumper between H and G, and another jumper between L and G.  This will simulate that both probes are in the liquid.  The relay will be energized, and the Normally Open (NO) contact will close.  You should have continuity between Common (C) and Normally Open (NO).         

 

16m-single-level5

Next step is to remove jumper between H and G, but leave the jumper between L and G.  This will simulate that the liquid level is dropping, which is typical in a pump down (valve drain) situation.  However, the relay should remain energized because it is latched, and still have continuity between C and NO.

 

16m-single-level6

Last step is to remove the jumper between L and G, so no jumpers are remaining.  This will simulate that the liquid level is beneath both the High (H) and Low (L) probes.  The relay should now be deenergized (LED off) and the Normally Open (NO) will be open and the Normally Closed (NC) will be closed. 

16m-single-level7

 

Additional Tests to Run

After the relay is bench tested, you can also perform these same tests at the probe fitting.  This will ensure the wiring is correct and there are no shorts present.  You may need a helper to confirm the relay is actuating.   

Since jumping the relay out does not test the relays ability to conduct through a liquid, you can also perform these same tests using a bucket of water.  When it calls for two contacts to be jumped out, for example H and G, then both H and G probes should be placed in the bucket of water.  This will accomplish the same thing and test the relays ability to conduct through the liquid. 

You may also choose to leave the probes installed and place the probe wire directly into the bucket of water.  In this case the wire will act as the probe and the probe wire.